Math 115
Fall 2018
Lecture 25

$$
\begin{aligned}
& 3 a^{2}+1 b^{2}=c^{2} ? \\
& y=m+0 \cdot b d=r t
\end{aligned}
$$

Feb 19-8:47 AM
factor Completely:

$$
\begin{aligned}
& \text { (1) } 25 x^{2}-81 y^{2} \\
& =(5 x)^{2}-(9 y)^{2} \\
& =(5 x+9 y)(5 x-9 y)
\end{aligned}
$$

$$
\text { (2) } 20 x^{3}+70 x^{2}-40 x
$$

$$
=10 x\left(2 x^{2}+7 x-4\right)
$$

$$
=10 x(2 x-1)(x+4)
$$

$$
\begin{aligned}
& \text { (3) } 125 x^{3}-27 y^{3} \\
& =(5 x)^{3}-(3 y)^{3} \\
& =(5 x-3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)
\end{aligned}
$$

Solve

$$
\begin{array}{lc}
\text { 1) } \begin{array}{rr}
(2 x-7) & (3 x+5)=0 \\
2 x-7=0 & 3 x+5=0 \\
x=\frac{7}{2} & x=\frac{-5}{3} \quad\left\{\frac{-5}{3}, \frac{7}{2}\right\}
\end{array}
\end{array}
$$

$$
\text { (3) } x(x-20)=-100
$$

$$
\begin{aligned}
& x^{2}-20 x=-100 \\
& x^{2}-20 x+100=0
\end{aligned}
$$

(2) $2 x^{2}+6=13 x$
$2 x^{2}+6-13 x=0$
$2 x^{2}-13 x+6=0$
$(2 x-1)(x-6)=0$

$$
\begin{gathered}
\begin{array}{c}
(x-10)(x-10)=0 \\
B y z \cdot F \cdot P . \\
x-10=0 \quad x-10=0 \\
x=10
\end{array} \\
\begin{array}{r}
x=\frac{1}{2} \\
x=6
\end{array} \quad\left\{\frac{1}{2}, 6\right\}\left\{\begin{array}{c}
\{10\} \\
\text { Repeated Ans }
\end{array}\right.
\end{gathered}
$$

By Z.F.P.,
$2 x-1=0$ or $x-6=0$

Use quadratic formula to Solve

$$
\begin{aligned}
x^{2}+4=5 x \\
x^{2}+4-5 x=0
\end{aligned} \quad \longleftrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, ~ \longrightarrow x x^{2}+b x+c=0
$$

Solve $3 x^{2}=11 x$ t20 by quadratic formula.

$$
\begin{array}{ll}
\begin{array}{ll}
3 x^{2}-11 x-20=0 \\
a=3 & b=-11 \quad c=-20
\end{array} & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\begin{aligned}
b^{2}-4 a c & =(-11)^{2}-4(3)(-20) \\
& =121+240 \\
& =361
\end{aligned} & x=\frac{-(-11) \pm \sqrt{361}}{2(3)} \\
x=\frac{11+19}{6}=\frac{30}{6}=5 &
\end{array}
$$

Solve $(2 x+1)(3 x+5)=3$ by using
quadratic formula. Hint: FOIL, Simplify, write in

$$
\begin{array}{cc}
6 x^{2}+10 x+3 x+5-3=0 & a x^{2}+b x+c=0 \\
6 x^{2}+13 x+2=0 & \text { form. } \\
\begin{array}{rlc}
a=6 & b=13 \quad c=2 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
b^{2}-4 a c=(13)^{2}-4(6)(2) & x=\frac{-13 \pm \sqrt{121}}{2(6)} \\
=169-48 & =\frac{-13 \pm 11}{12} \\
=121 \quad x=\frac{-13+11}{12}=\frac{-2}{12}=-\frac{1}{6} \\
x=\frac{-13-11}{12}=-\frac{24}{12}=-2 \\
& \left\{-2,-\frac{1}{6}\right\}
\end{array}
\end{array}
$$

Area of a rectangular room is $51 \mathrm{~m}^{2}$. The width is 5 m longer than 4 times

$$
\begin{aligned}
& \text { its length. } \\
& \text { find its dimensions. } \\
& A=51 \\
& x(4 x+5)=51 \quad A=L W
\end{aligned} \quad A=51 \quad 4 x+5
$$

$$
4 x^{2}+5 x-51=0
$$

$$
\begin{array}{ccc}
4 x & +5 x & -51 \\
a=4 & b=5 & c=-51
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{array}{rlr}
b^{2}-4 a c & =5^{2}-4(4)(-51) \\
& =25+816=841 & x=\frac{-5 \pm \sqrt{841}}{2(4)}
\end{array}
$$

$$
x=\frac{-5+29}{8}=\frac{24}{8}=3 \quad x=\frac{-5 \pm 29}{8}
$$

Dec 5-6:50 AM

In the right triangle $A B C$, one leg is 14 inches shorter than the other leg. Hypotenuse is 2 inches longer than the longer leg. Find all three sides.

$$
\begin{array}{ll}
x - 1 4 \longdiv { c } \begin{array} { c }
{ \text { Right Triangle } } \\
{ a ^ { 2 } + b ^ { 2 } = c ^ { 2 } }
\end{array} \\
x^{2}+(x-14)^{2}=(x+2) & \text { Pythagorean thrm } \\
x^{2}+(x-14)(x-14)=(x+2)(x+2) \\
x^{2}+x^{2}-14 x-14 x+196=x^{2}+2 x+2 x+4 \\
x^{2}-28 x+196-4 x-4=0 \\
x^{2}-32 x+192=0
\end{array}
$$

$$
\begin{aligned}
& x^{2}-32 x+192=0 \\
& a=1 \quad b=-32 \quad c=192 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-(-32) \pm \sqrt{256}}{2(1)} \\
& b^{2}-4 a c=(-32)^{2}-4(1)(192)=\frac{32 \pm 16}{2} \\
& =256 \quad 3 \text { sides ave }
\end{aligned}
$$

The sum of the Squares of two consecutive odd integers is equal to 103 more than their product. find all such odd integers.

$$
\begin{aligned}
& x^{2}+(x+2)^{2}=x(x+2)+103 \\
& x^{2}+(x+2)(x+2)=x(x+2)+103 \\
& x^{2}+x^{2}+2 x+2 x+4=x^{2}+2 x+103 \\
& x^{2}+2 x-99=0 \\
& a=1 \quad b=2 \quad c=-99 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{400}}{2}=\frac{-2 \pm 20}{2} \\
& \begin{array}{l}
b^{2}-4 a c=2^{2}-4(1)(-99)=400 \quad x=\frac{-2+20}{2}=\frac{18}{2}=9 \\
\\
x=\frac{-2-20}{2}=\frac{-22}{2}=-11
\end{array}
\end{aligned}
$$

New Chapter
Rational Expressions
Polynomial
Polynomial

$$
\frac{3 x+7}{2 x-5}, \frac{x^{2}-4}{x^{3}-8}, \frac{x^{2}-8 x+15}{x^{2}-25}
$$

To Simplify/reduce a rational expression

1) Factor numerator Completely
2) factor denominator Completely
3) Cross -out any Common factor.

Dec 5-7:40 AM

Reduce $\quad \frac{3 x+15}{4 x+20}=\frac{3(x+5)}{4(x+5)}=\frac{3}{4}$

Reduce $\quad \frac{x^{2}-7 x}{2 x-14}=\frac{x(x-1)}{2(x-1)}=\frac{x}{2}$
Reduce $\quad \frac{x^{2}-25}{x^{2}+8 x+15}=\frac{(x+5)(x-5)}{(x+5)(x+3)}$

$$
=\frac{x-5}{x+3}
$$

Reduce:

$$
\text { (1) } \begin{aligned}
& \frac{x^{2}-5 x-14}{x^{2}+x-2} \\
= & \frac{(x-7)(x+2)}{(x+2)(x-1)} \\
= & \frac{x-7}{x-1}
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& \frac{x y+4 x-3 y-12}{x y+4 x+5 y+20} \\
= & \frac{x(y+4)-3(y+4)}{x(y+4)+5(y+4)} \\
= & \frac{(y+4)(x-3)}{(y+4)(x+5)} \\
= & \frac{x-3}{x+5}
\end{aligned}
$$

How to multiply rational expressions:

1) Factor all numerators completely
2) factor all denominators Completely
3) Cross -out any Common factors Mu Hiply:

$$
\begin{gathered}
\frac{x^{2}+3 x+2}{x^{2}+5 x+4} \cdot \frac{x^{2}+10 x+24}{x^{2}+5 x+6}=\frac{(x+2)(x+1)}{(x+1)(x+4)} \cdot \frac{(x+4)(x+6)}{(x+2)(x+3)} \\
=\frac{x+6}{x+3}
\end{gathered}
$$

Multiply:

$$
\begin{aligned}
& \frac{x^{2}-x-6}{x^{2}-2 x-8} \cdot \frac{x^{2}+7 x+12}{x^{2}-9} \\
= & \frac{(x-3)(x+2)}{(x+2)(x-4)} \cdot \frac{(x+4)(x+3)}{(x+3)(x-3)} \\
= & \frac{x+4}{x-4}
\end{aligned}
$$

Divide: $\frac{x^{2}-3 x+2}{x^{2}+4 x+3} \div \frac{x-1}{x+1}$

$$
\begin{aligned}
& =\frac{x^{2}-3 x+2}{x^{2}+4 x+3} \cdot \frac{x+1}{x-1} \\
& =\frac{(x-1)(x-2)}{(x+1)(x+3)} \cdot \frac{x+1}{x-1} \\
& =\frac{x-2}{x+3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Divide: } \frac{2 x^{2}-5 x-12}{x^{2}-10 x+24} \div \frac{4 x^{2}-9}{x^{2}-9 x+18} \\
& =\frac{2 x^{2}-5 x-12}{x^{2}-10 x+24} \div \frac{x^{2}-9 x+18}{4 x^{2}-9} \\
& =\frac{(2 x+3)(x-4)}{(x-6)(x-4)} \cdot \frac{(x-6)(x-3)}{(2 x+3)(2 x-3)} \\
& =\frac{x-3}{2 x-3}
\end{aligned}
$$

$$
\text { Divide: } \begin{aligned}
& \frac{2 x^{2}-x-1}{2 x^{2}+5 x+3} \div \frac{4 x^{2}-1}{2 x^{2}+x-3} \\
&= \frac{2 x^{2}-x-1}{2 x^{2}+5 x+3} \cdot \frac{2 x^{2}+x-3}{4 x^{2}-1} \\
&= \frac{(2 x+1)(x-1)}{(2 x+3)(x+1)} \cdot \frac{(2 x+3)(x-1)}{(2 x+1)(2 x-1)} \\
&=\frac{(x-1)^{2}}{(x+1)(2 x-1)}
\end{aligned}
$$

$$
\text { Simplify } \begin{aligned}
\frac{4}{9}+\sqrt[2]{9} & =\frac{4+2}{9} \\
& =\frac{6}{9}=\frac{2 \cdot 3}{3 \cdot 3}=\frac{2}{3}
\end{aligned}
$$

Simplify: $\frac{x-1}{x+3}+\sqrt{x+3}=\frac{x-1+4}{x+3}$

$$
=\frac{x+3}{x+3}=1
$$

Simplify:

$$
\begin{aligned}
& \frac{x^{2}-8 x}{x-3}+\frac{15}{x-3} \\
& =\frac{x^{2}-8 x+15}{x-3} \\
& =\frac{(x-3)(x-5)}{x-3}=x-5
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{x^{2}-3 x}{x+3}-\frac{18}{x+3} \\
& =\frac{x^{2}-3 x-18}{x+3} \\
& =\frac{(x+3)(x-6)}{x+3}=x-6
\end{aligned}
$$

Simplify:

$$
\begin{gathered}
\frac{4 x}{x^{2}-4} \frac{3 x+2}{x^{2}-4} \\
=\frac{4 x-3 x-2}{x^{2}-4} \\
=\frac{x-2}{x^{2}-4}=\frac{1(x-2)}{(x+2)(x-2)} \\
=\frac{1}{x+2}
\end{gathered}
$$

Simplify:

$$
\begin{aligned}
& \frac{2 x-3}{x^{2}+5 x+6}=\frac{2 x-3-5}{x^{2}+5 x+6} \\
& =\frac{x+5}{x^{2}+5 x+6}=\frac{x+2}{x^{2}+5 x+6}
\end{aligned}
$$

Due Thursday

$$
S G \quad 15 \quad \& \quad 1.6
$$

$$
\begin{aligned}
& =\frac{1(x+2)}{(x+3)(x+2)} \\
& =\frac{1}{x+3}
\end{aligned}
$$

Graph of $y=2 x^{2}+5 x-7$ has two x-intercepts. find both of them.

$$
\begin{aligned}
& x \text { - Int } \rightarrow y=0 \rightarrow 2 x^{2}+5 x-7=0 \\
& \text { by factoring } \\
& (2 x+7)(x-1)=0 \\
& \text { using Z.F.P. } \\
& \begin{array}{cc}
2 x+7=0 & \text { or } x-1=0 \\
x=\frac{-7}{2} & x=1
\end{array}
\end{aligned}
$$

